Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 22(1): e12583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385599

RESUMO

In 2016, IODP-ICDP Expedition 364 recovered an 829-meter-long core within the peak ring of the Chicxulub impact crater (Yucatán, Mexico), allowing us to investigate the post-impact recovery of the heat-sterilized deep continental microbial biosphere at the impact site. We recently reported increased cell biomass in the impact suevite, which was deposited within the first few hours of the Cenozoic, and that the overall microbial communities differed significantly between the suevite and the other main core lithologies (i.e., the granitic basement and the overlying Early Eocene marine sediments; Cockell et al., 2021). However, only seven rock intervals were previously analyzed from the geologically heterogenic and impact-deformed 587-m-long granitic core section below the suevite interval. Here, we used 16S rRNA gene profiling to study the microbial community composition in 45 intervals including (a) 31 impact-shocked granites, (b) 7 non-granitic rocks (i.e., consisting of suevite and impact melt rocks intercalated into the granites during crater formation and strongly serpentinized pre-impact sub-volcanic, ultramafic basanite/dolerite), and (c) 7 cross-cut mineral veins of anhydride and silica. Most recovered microbial taxa resemble those found in hydrothermal systems. Spearman correlation analysis confirmed that the borehole temperature, which gradually increased from 47 to 69°C with core depth, significantly shaped a subset of the vertically stratified modern microbial community composition in the granitic basement rocks. However, bacterial communities differed significantly between the impoverished shattered granites and nutrient-enriched non-granite rocks, even though both lithologies were at similar depths and temperatures. Furthermore, Spearman analysis revealed a strong correlation between the microbial communities and bioavailable chemical compounds and suggests the presence of chemolithoautotrophs, which most likely still play an active role in metal and sulfur cycling. These results indicate that post-impact microbial niche separation has also occurred in the granitic basement lithologies, as previously shown for the newly formed lithologies. Moreover, our data suggest that the impact-induced geochemical boundaries continue to shape the modern-day deep biosphere in the granitic basement underlying the Chicxulub crater.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Bactérias/genética , Dióxido de Silício
2.
Front Microbiol ; 12: 668240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248877

RESUMO

We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.

3.
Geobiology ; 19(2): 162-172, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274598

RESUMO

The vertical distribution of subseafloor archaeal communities is thought to be primarily controlled by in situ conditions in sediments such as the availability of electron acceptors and donors, although sharp community shifts have also been observed at lithological boundaries suggesting that at least a subset of vertically stratified Archaea form a long-term genetic record of coinciding environmental conditions that occurred at the time of sediment deposition. To substantiate this possibility, we performed a highly resolved 16S rRNA gene survey of vertically stratified archaeal communities paired with paleo-oceanographic proxies in a sedimentary record from the northern Red Sea spanning the last glacial-interglacial cycle (i.e., marine isotope stages 1-6; MIS1-6). Our results show a strong significant correlation between subseafloor archaeal communities and drastic paleodepositional changes associated with glacial low vs. interglacial high stands (ANOSIM; R = .73; p = .001) and only a moderately strong correlation with lithological changes. Bathyarchaeota, Lokiarchaeota, MBGA, and DHVEG-1 were the most abundant identified archaeal groups. Whether they represented ancient cell lines from the time of deposition or migrated to the specific sedimentary horizons after deposition remains speculative. However, we show that the majority of sedimentary archaeal tetraether membrane lipids were of allochthonous origin and not produced in situ. Slow post-burial growth under energy-limited conditions would explain why the downcore distribution of these dominant archaeal groups still indirectly reflect changes in the paleodepositional environment that prevailed during the analyzed marine isotope stages. In addition, archaea seeded from the overlying water column such as Thaumarchaeota and group II and III Euryarchaeota, which were likely not have been able to subsist after burial, were identified from a lower abundance of preserved sedimentary DNA signatures, and represented direct markers of paleoenvironmental changes in the Red Sea spanning the last six marine isotope stages.


Assuntos
Archaea , Euryarchaeota , Archaea/genética , DNA Arqueal/genética , Sedimentos Geológicos , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética
4.
Sci Rep ; 7(1): 6040, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729646

RESUMO

Selection of microorganisms in marine sediment is shaped by energy-yielding electron acceptors for respiration that are depleted in vertical succession. However, some taxa have been reported to reflect past depositional conditions suggesting they have experienced weak selection after burial. In sediments underlying the Arabian Sea oxygen minimum zone (OMZ), we performed the first metagenomic profiling of sedimentary DNA at centennial-scale resolution in the context of a multi-proxy paleoclimate reconstruction. While vertical distributions of sulfate reducing bacteria and methanogens indicate energy-based selection typical of anoxic marine sediments, 5-15% of taxa per sample exhibit depth-independent stratigraphies indicative of paleoenvironmental selection over relatively short geological timescales. Despite being vertically separated, indicator taxa deposited under OMZ conditions were more similar to one another than those deposited in bioturbated intervals under intervening higher oxygen. The genomic potential for denitrification also correlated with palaeo-OMZ proxies, independent of sediment depth and available nitrate and nitrite. However, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the same denitrifier groups. Fermentation thus may explain the subsistence of these facultatively anaerobic microbes whose stratigraphy follows changing paleoceanographic conditions. At least for certain taxa, our analysis provides evidence of their paleoenvironmental selection over the last glacial-interglacial cycle.


Assuntos
Clima , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Metagenoma , Metagenômica/métodos , Oceanos e Mares , RNA Ribossômico 16S/genética
5.
Front Microbiol ; 4: 367, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367357

RESUMO

The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation.

6.
Environ Microbiol ; 13(8): 2299-314, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554513

RESUMO

Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic matter (SOM) respiration. We performed time-series incubation experiments with Holocene permafrost soils at 4°C for up to 11 days to determine changes in exoenzyme activities (EEAs) (i.e. phosphatase, ß-glucosidase, aminopeptidase) as a measure for the bioavailability of SOM in response to permafrost thaw. We also profiled SSU rRNA transcripts to follow the qualitative and quantitative changes in viable prokaryotes and eukaryotes during incubation. EEA, amount of rRNA transcripts and microbial community structures differed substantially between the various soil intervals in response to thaw: after 11 days of incubation, the active layer became slightly depleted in C and P and harboured bacterial phyla indicative of more oligotrophic conditions (Acidobacteria). A fast response in phosphatase and ß-glucosidase upon thaw, and a predominance of active copiotrophic Bacteroidetes, showed that the upper permafrost plate serves as storage of easily degradable carbon derived from the overlying thawed active layer during summer. EEA profiles and microbial community dynamics furthermore suggest that the deeper and older permafrost intervals mainly contain recalcitrant SOM, and that extracellular soil-bound exoenzymes play a role in the initial cleavage of biopolymers, which could kick-start microbial growth upon thaw. Basidiomycetous fungi and Candidate Subdivision OP5 bacteria were the first to respond in freshly thawed deeper permafrost intervals, and might play an important role in the decomposition of recalcitrant SOM to release more labile substrates to support the major bacterial phyla (ß-Proteobacteria, Actinobacteria, Firmicutes), which predominated thereafter.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiologia do Solo , Solo/química , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Disponibilidade Biológica , Carbono/análise , Carbono/metabolismo , DNA/análise , Células Eucarióticas/metabolismo , Genes de RNAr/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
7.
FEMS Microbiol Ecol ; 62(3): 242-57, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17991018

RESUMO

The spatial and temporal distribution of pelagic Archaea was studied in the southern North Sea by rRNA hybridization, sequencing and quantification of 16S rRNA gene and membrane lipid analyses and related to physical, chemical and biological parameters to determine the factors influencing archaeal biogeography. A clear temporal variability was observed, with marine Crenarchaeota (Group I.1a) being relatively more abundant in winter and Euryarchaeota dominating the archaeal assemblage in spring and summer. Spatial differences in the lateral distribution of Crenarchaeota were also evident. In fact, their abundance was positively correlated with the copy number of the gene encoding the alpha subunit of crenarchaeotal ammonia monooxygenase (amoA) and with concentrations of ammonia, nitrate, nitrite and phosphorus. This suggests that most Crenarchaeota in the North Sea are nitrifiers and that their distribution is determined by nutrient concentrations. However, Crenarchaeota were not abundant when larger phytoplankton (>3 microm) dominated the algal population. It is hypothesized that together with nutrient concentration, phytoplankton biomass and community structure can predict crenarchaeotal abundance in the southern North Sea. Euryarchaeotal abundance was positively correlated with chlorophyll a concentrations, but not with phytoplankton community structure. Whether this is related to the potential of Euryarchaeota to perform aerobic anoxygenic phototrophy remains to be shown, but the conspicuous seasonal distribution pattern of Crenarchaeota and Euryarchaeota suggests that they occupy a different ecological niche.


Assuntos
Crenarchaeota/isolamento & purificação , Ecossistema , Euryarchaeota/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia , Crenarchaeota/química , Crenarchaeota/classificação , Crenarchaeota/genética , DNA Arqueal/análise , Euryarchaeota/química , Euryarchaeota/classificação , Euryarchaeota/genética , Genes de RNAr , Lipídeos de Membrana/análise , Dados de Sequência Molecular , Nitritos/metabolismo , Mar do Norte , Hibridização de Ácido Nucleico , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA
8.
Proc Natl Acad Sci U S A ; 103(33): 12317-22, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16894176

RESUMO

Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Crenarchaeota may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and showed that its abundance, and not that of bacteria, correlates with ammonium oxidation to nitrite. A time series study in the North Sea revealed that the abundance of the gene encoding for the archaeal ammonia monooxygenase alfa subunit (amoA) is correlated with a decline in ammonium concentrations and with the abundance of Crenarchaeota. Remarkably, the archaeal amoA abundance was 1-2 orders of magnitude higher than those of bacterial nitrifiers, which are commonly thought to mediate the oxidation of ammonium to nitrite in marine environments. Analysis of Atlantic waters of the upper 1,000 m, where most of the ammonium regeneration and oxidation takes place, showed that crenarchaeotal amoA copy numbers are also 1-3 orders of magnitude higher than those of bacterial amoA. Our data thus suggest a major role for Archaea in oceanic nitrification.


Assuntos
Crenarchaeota/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Água do Mar/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Crenarchaeota/classificação , Crenarchaeota/genética , Dados de Sequência Molecular , Nitrogênio/química , Mar do Norte , Oxirredução , Filogenia , Compostos de Amônio Quaternário/química
9.
FEMS Microbiol Lett ; 219(2): 203-7, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12620621

RESUMO

Biphytanyl membrane lipids and 16S rRNA sequences derived from marine Crenarchaeota were detected in shallow North Sea surface water in February 2002. To investigate the carbon fixation mechanism of these uncultivated archaea in situ (13)C bicarbonate tracer experiments were performed with this water in the absence of light. About 70% of the detected (13)C incorporation into lipids (including fatty acids and sterols) is accounted for by the crenarchaeotal biphytanyl membrane lipids. This finding indicates that marine Crenarchaeota can utilize bicarbonate or CO(2) derived thereof in the absence of light and are chemoautotrophic organisms.


Assuntos
Bicarbonatos/metabolismo , Crenarchaeota/metabolismo , Sequência de Bases , Transporte Biológico , Carbono/metabolismo , Lipídeos/análise , Oceanos e Mares , Filogenia , RNA Ribossômico 16S , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...